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Abstract

We survey the advances in the p- and the h-p versions of the finite

element method. An up-to-date list of references related to these methods is

provided.
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1. Introduction and brief history.

The origins of the finite element method (FEM), like those of the
spectral method, may be traced back a long time. If we understand the FEM as
the application of variational principles and approximation by piecewise
smooth functions, then this idea was already used by Leibnitz in 1686 (in

one dimension with piecewise linear functions). In two dimensions, Schellbach

R

used triangulation and piecewise linear functions.fsee—e¥so—{244<a Never-
6 N\
theless, the modern FEM era starts with the paper'TSf which demonstrated the

potential for the use of Ehg‘qomputer. Since then, more than 30,000 papers
have appearedﬁ%see'[4+:‘{5}, [G;;7§These papers are generally based on the
h~version of the FEM, where the accuracy of the approximate solution is
achieved by refining the mesh while usingﬁ.}qu_g; polynomials on the mesh. (/(Q)
The spectral method, when understood to be the use of variational ﬂ\
principles (or other methods, such as collocation), combined with the use of
polynomials of high degree, was already known to Ritz. A method of this type
was developed (among others) by Galerkin (7] and was discussed in detail in
(8], for eg.. A number of further developments of this method, attributed to
S.G. Michlin, may be found in his many papers and books. For example, in [9]
he discussed principles for the selection of basis functions and outlined a
program (based on polynomial approximation) for the Soviet computer M-20. For
various theoretical aspects we refer to the important paper [10].
Both methods mentioned were found to have their strengths and weaknesses.
The FEM provided considerable flexibility and was well suited for computer
implementation. The spectral method offered high rates of convergence when
the solution was smooth.
In the 1970s, B.A. Szabo, recognizing these aspects, suggested and
implemented a combination of the two approaches to utilize the advantages of

each. Today, thls combination is called the p~ and the h-p version of the




finite element method. If the mesh Is fixed and the accuracy of the solution
is achieved only by increasing the degree of the elements, we obtain the
p-version of the FEM. (If the domain is a scuare or triangle, and is under-
stood to be one element, then the p-version is identical to the Ritz method
described, for example, in [8]). If we simultaneously refine the mesh and
increase the degrees of elements uniformly or selectively, we obtain the

h-p version.

The first theoretical paper addressing the p-version was [11] and the h-p
version [12]. Since Szabo’'s original work, significant progress has been made
for these methods in terms of theory, implementation and engineering applica-
tions. Some of these achievements are addressed in this paper.

The spectral-method has been applied extensively in the last 15 years to
problems in fluid mechanics. Recently, there has been interest shown in using
this method over partitioned domains (rather than a single one, see for eg.
[13]). In this context, the spectral method over a partitioned domain is very
similar to the h-p version, though the emphasis of the two methods is
different - the h-p version of the FEM concentrating on the special needs of
structural mechanics analysis, while the spectral method being specialized
more for fluld mechanics.

There are many programs based on the h-version of the FEM, some major
commercial ones being MCNASTRAN, ADINA, ANSYS and others. There are only two
commercial programs based on the p- and h-p version, FIESTA and PROBE, in
addition to a large research program called STRIPE. Other commercial programs
based on the p-version are being developed at various places and will be on
the market in the near future. The authors of this paper have experience with
PROBE and references to it (rather than any alternative) are for convenience

only.
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The h-p version of the finite element method has various features which
are reflected in the implementation and architecture of the program and are
different from the h-version. Recent advances in computer hardware bring to
the forefront the problem of reliability of computations and the repercussions

of the rapidly changing ratio between computer and human costs. The h-p

version offers various essentially new possibilities which the h-version does
not. As examples, we mention the (a-posteriori) assessment of the errors of
the FEM calculations, new possibilities in the modeling of plates and shells
(with models of Reissner-Mindlin type being naturally created) and inherent
parallelization. In addition, the h-p version shows remarkable robustness,
for eg. with respect to locking phenomena.
N\

In this paper uefpresengﬁf survey of the state of the art of the p and
h-p versions. The emphasis is on the theoretical agpects related to their use
in approximating elliptic equations stemming from structural mechanics. “‘-E) f;ZA_,

6’)

2. The model problenm.

Problems in structural mechanics and the mechanics of solids are
typically characterized by elliptic partial differential equations with
plecewvise analytic data, pertaining to the boundary, boundary conditions,
coefficients and right hand side. Consequently, one can expect special
features in the solution which should be somehow exploited by the numerical
method used. In this section, we mention some typical available results. For

simplicity and brevity, we restrict our discussion to the two dimensional

case.
Let Qjc:Rz. J=12,---,M be simply connected domains with boundaries
my _ -
anJ = F(J) = U riJ’. FiJ) are analytic simple arcs which we call edges,
i=1

while the ends A{J). A:f; of the edges are called vertices. If mJ = 3,




respectively mJ = 4, we call nJ a cyrvilinear triangle, respectively

guadrilateral. Otherwise it will be a curvilinear polygon. We will assume

that Q,nQ is either empty, is a common vertex, or is a common edge. Let

J i
M
Q! be the interior of U QJ and assume that Q 1is a domain. By l"n we
J=1

denote the boundary of . The edges I‘g"” not belonging to l‘n will be

called interface edges.
We now consider a model problem for second order scalar elliptic

differential equations written in the weak form. Let

. - du av
(2.1) B(u,v) = J' [ I ey 671@] dx,dx,,
Q i,j=1,2
where alJ = aLJi are analytic functions on ﬁz satisfying the standard

ellipticity condition

(2.2) Z 2, 51%"":‘%*52)' 7,20, L= 1,5 M.
1,J=1,2

Further, let

(2.3) Fy(v) = I £v dx, dx,
Q
where f 1s an analytic function on Q , ¢=1,-- M. Let w be continuous
(L)

on D= U f'l.f‘ =T

t:l'n and analytic on I,. D will be
1 J 1
l"ieD

called the Dirichlet boundary.

Finally, let H = l"n-D be the Neumann boundary and let g be defined

on X and analytic on every l'1 €N, with
(2.4) Fz(v) = Z I g v ds.
rieR l"1

The exact solution of our model problem is defined in the usual way: find

uotlil(n), Uy = on D such that

4
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(2.5) B(uo,v) = (F1+F2)(v)

for all veDH1 = {veHl(Q), v=0 on D). If D 1is empty, then the usual

solvability condition for F14-F2 has to be satisfied. By “u"E = (B(u,u))l/2

we denote the energy norm of u. It is equivalent to the Hl(n) seminorm
(and to the HI(Q) norm on 0Hl(n)). The most important cases are when aij

are constant on every Qt’ L=1,--- M

A similar formulation holds for the elasticity problem. Here, u = (ul,uz)

and
(2.6) B(u,v) =J' ¥ by 1S4 5(WEy (¥))x,dx,
Q 1,35,k 1=1,2
ZERY "'é [‘;_“_1+:_“_,1_]
J xJ Xy .
with the standard assumptions about biJ and the functional F. The

assumptions about the plecewise analyticity are analogously formulated as
before. Here the boundary conditions can be more general, combining traction
components and displacements on particular I'J.

In the case of an isotropic material, the bilinear form is

E v
(2.7) Bu,v) = o7 Z ciJ(l_l)ciJ(\_/) + 1=5p (div udiv v) ]dxldxz.

aQ i,j=t1,2

Here, v 1is the Poisson ratio, 0<v<% and E 1is the Young's modulus
of elasticity. The form degenerates for v—)% but regularity of the
solution is preserved. A similar degeneration with preservation of the
regularity properties also occurs for general anisotropic materials (see [14],
[15], for eg.).

The behavior of the solution is essentially very similar in both the

scalar case and the elasticity problem. The solution Yy




a) is analytic in Q.- U A(J), i=1----m, J=1,---,M
AW J

b) has a special singular behavior in the neighborhood of every AiJ).

The behavior of the solution is best understood when the operator in our

problem is the Laplacian. In this case, near a vertex, we have

J S N aom
(2.8) uy = Z Z z ¢ jom ¥ysn®T log'r + u.
J=1 s=0 m=0

Here, (r,0) are local polar coordinates at the corner point under considera-
tion. The decomposition (2.8) is such that the remainder GO is smoother
than the terms in the sum. The functions stm are smooth (in our case

piecewise analytic). We have S = 0 except for special cases, when S =1

is possible. N may be 0 or positive. For eg., N#0 1in the cases when
(1)

aiJ are nonconstant or FJ are curved. For details we refer to [16]. The
norm of 50 in (2.8) depends on the geometry and diverges to o when the
geometry converges to certain exceptional cases. The coefficients ¢ are

Jsm
related to the stress intensity factors. They can be global, depending on
Uy, or local, depending only on the input data at the vertex.

In the case of the elasticity equations, the results are similar,
although not as detalled. The coefficlents aJ in (2.8) can now be complex
and the conditions for S and M are not completely characterized.

There is often a practical need in actual problems to know the values of
«

J

algorithm for determining these coefficients and functions is given. As an

and the functions ¢, . In [17) a general, adaptive, completely robust
Jsm

example of the complicated structure of these coefficients, we show the two-
material (anisotropic) case when zero displacements are prescribed at the

boundary (Fig.2.1).




ADHESIVE

GRAPHITE

Fig.2.1 the scheme of the two material domain.

The two materials are typical anisotropic ones used in engineering.
Graphite 1s highly anisotropic while adhesive 1s only slightly anisotropic.

Figs. 2.2 show the first six (or seven) « with smallest real part as

5

functions of the angle (the accuracy is 10 ). Fig. 2a shows the real part

of «,. If a, is complex, values are denoted by circles. Fig. 2b depicts

J J
the imaginary part. For details see [17].
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Fig.2.2a) The real part of aJ. Fig.2.2b) The imaginary part of aJ.

There is a vast literature devoted to the analysis of the decomposition
(2.8). We mention here (18], [19], [20], [(21] and references given therein.
The above decomposition is valid when the input data are smooth but not
necessarily analytic. Another characterization of the regularity, given in

terms of countably normed spaces, was analyzed in [22], (23], [24]), (25]. For




example, it is shown that for the exact solution Uy

-1
(2.9) |D°‘u0|sc[r'°"*'3'1] a'®lay 0cget

holds for all a21. Here C and d are independent of «. In the above
references, the complete characterization of these normed spaces together with
corresponding trace spaces and extensions is analyzed.

In 3 dimensions, the situation is more complicated due to the presence of
both edge and vertex singularities. As a result, the regularity may be
different along different directions, leading to the use of anisotropic
spaces.

Let us finally point out that the regularity of the solution of our model
problem may also.5e characterized in terms of standard Sobolev (or Besov)
spaces. Accordingly, if « 1is the minimum over all vertices A, of the

J

(or Re(ea,) if «, are complex) in (2.8), then we have

J J J

exponents «

(2.10) ueH Q) V k<1 +a.

Most classical finite element error estimates rely on regularity results

of the form (2.10).

3. The h-, p~ and h-p version of the finite element method.

To illustrate the basic results, we restrict ourself to very special
cases, although the available results are completely general.
Let us conslder the case when 1 1is an L-shaped domain, as shown in

Fig.3.1.




Fi1g.3.1 The scheme of the L-shaped domain.

We consider the elasticity problem (2.7) with f = 0 and traction

boundary conditions such that

(3.1) u, = %E M (k-Q(A+1)) cos A@ - A cos (A-2)8]
u, = %E rA[(n+Q(A+1)) sin A0 + A sin (A-2)6]
where
k=3 - 4,
G = E/2(1+v)

Q= - ASin (A-1)w/2
sin (A+1)w/2

with v = 0.3, A = 0.544484, w = 5 n. The sides OE, and OA (see Fig.3.1) are

MNW

traction free. Solution (3.1) is one term in the decomposition mentioned in
Section 2.

As usual, we introduce a mesh to partition Q. For simplicity, we first
consider the case of a ypiform partition, characterized by the parameter h
(see Fig.3.2).




In

N R e

T =

Fig.3.2 The uniform mesh.

The finite element spaces v:ul(n) will consist of continuous piecewise
polynomials of degree p on the squares of the mesh. The exact set of
peolynomials used over each square consists of either Qp, the set of
polynomials of degree p separately in each variable, or Qé. the minimal set
containing polynéﬁlals of total degree p. See eg.[26] for details. The

finlte element solution uc is then defined as usual by
B(upp,v) = F(y) WyeV

with the error satisfying

lu, - u i = min lu -wil..
o~ YrE'E eV o Yig

The space V (and hence also BFE) is characterized by two parameters, p
and h, so that V = V(p,h). By N(p,h) we denote the dimension (i.e. the
number of degrees of freedom) of V(p,h). In order to obtain a desired

accuracy for our approximation, we use an extensjon procedure, i.e. a

procedure to increase the dimension N(p,h). This can be of three types:

a) h-vergsion. Here p 1is fixed, usually at a low level (eg. 1 or 2) and
we achleve the desired accuracy by taking h-—0.
b) p-version. In this case h 1is fixed, i.e. the same mesh is used and

p—w, l.e. the accuracy is achieved by increasing p.

10
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c) h-p version. Here h and p are simultaneously changed (either

uniformly or selectively).
In general, we will be interested in the relative error “e"ER =

- 7/
"90 EFE"E’"BOHE' We present some theorems for our approximation which are

the special cases of those proven in [27], [28].

Theorem 3.1 [27]

_ min(A,p)_-2A
(3.2) 4 - Ypplg SCh P

where C 1is a constant independent of h and p.

The above theorem holds for both cholces Qp and Q;. In 2 dimensions,
N = h.zp2 so that to obtain the optimal asymptotic rate minimizing N(p,h), we
choose h =1, i.e. the p-version. (Of course, N does not completely measure
the needed work. Moreover, the accuracy measured in the energy norm is not

necessarily the accuracy we are seeking in practice). Figs. 3.3a and 3.3b

show the errors for the h- and p~ versions respectively with elements of Q;

type.
40
2
g3
Eg 2
§§ 1S
£
3 RS
BE o e s
z 8 1 ~B.
7 i y -
6
3 i s 5%
MESH SIZE h

Fig. 3.3a The error for the h-version
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0

9 - >\ - =
8 4.'% 'n\_';é_-.l

7 hs

6 — I

{ 2 3 4 5678
OEGREE p OF ELEMENTS

Fig.3.3b The error for the p-version

The figures are drawn in the log log scale. They show that (3.2) correctly
characterizes the asymptotic behavior which is defined by the slope in the
figure. i

Let us now consider a non-uniform geometric meéh with n layers and with

ratio 0.15. This is shown in Fig.3.4 for n = 2.

c

T
.{.

Fig.3.4 The geometric mesh

The shape functions are now the usual mapped polynomials using blending
mapping techniques for the circular sides. For details, see eg. [29].
In Fig.3.5 we show the error for different numbers of layers and the

(uniform) degree p 1in the log log scale

12
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Fig.3.5 The error as a function of n and p.

Relotive Error in Energy Norm lellg o %

bl g

1/3

Fig.3.6 shows the error behavior in log ||eIIERxN for selected

combinations of n and p.

88

g8

204080100 200 400 800000 2000

Reiative Error In Energy Norm lebg o %
N

Number of Degrees of Freedom
Fig.3.6 The error "°“m for selected combinations of (n,p).

3
We see that ”e“ER s Ce ¥ W . Estimates of this type have been analyzed

in [30], [31], [32], employing the smoothness characterization of (2.9). We

have
Theorem 3.2 [32]. Let the mesh with n layers be considered and let
punspsvn, p>1 O<u<v<em,

Then if u

0 satisfies (2.9), we have

3
Hgo-\_xmuESCe-7 W , ¥>0

In actual computations, the remeshing required by the h-p version is

13




a disadvantage due to increased human cost. Consequently, the usual practice
while employing p and h-p versions codes is to use a fixed, strongly
refined mesh and then increase p (i.e. the p-version). The mesh design
should be such that the desired accuracy will, as far as possible, be achieved
for the optimal pair (n,p). In [33], [34] an attempt to design an expert

system for such selectlion is presented.

Theorem 3.1 1s a special case of the following, more general theorem,

proved in [27].

Theorem 3.3.{27]  Assume that u, has the form (2.8) with « = min «,. Then

J
« hmin(a,p—a) S S
|ll_10"l_lFEl|E$C8(h.P,S) min [h e ]. g(h,p,S) = max (|loghl™, [logpl™)
P

Theorems 3.1 and 3.3 show the interesting fact that the convergence rate
of the p-version is twice that of the h-version uhe; a uniform or (more
generally) a quasiuniform mesh is used. This fact was proved in [11] for the
p-version (see also [35]).

In this connection, the following resuit from (27] is useful when u, is
only known to be in some Sobolev space as in (2.10).

Theorem 3.4 [27]. Let goer(Q), k> 1. Then if the spaces V =

V(p,h) are based on a uniform (or quasiuniform) family of meshes,

-(k-1)
(3.3) lu, - u s Ch¥p fu i
o~ %E'E o' k)

where u = min (p,k-1) and C 1is independent of go,h.p.

Theorem 3.4 improves the classical estimate

- M
g - Ypplp SC(p)h “‘—‘ouﬂk(m

for the h-version by explicitly showing how the constant C(p) decreases when

P 18 increased. Note that theorem 3.3 is a more refined result for solutions

14




of the form (2.8), since using (2.10) with theorem 3.4 will not yield the
observed doubling in the rate of convergence of the p-version.
The p-version has been analyzed for 3-dimensional problems in {36], [37].
Various problems arising, for example, from the theory of plates and
shells may be described by elliptic equations of order 2m where m>1. For
such problems, if the elements used are conforming piecewise polynomials, then
they must have m-1 continuous derivatives over Q. Approximation results

1 elements have been established in [38],

for the p-version using such c™
where it is shown that once again, due to the presence of r* type singulari-
ties in the solution, one obtains twice the rate of convergence of the
h-version. The case m=2 was originally discussed in [39]) where some
computational results using C1 elements are presented. Theorems for the h-p
version for equations of order 2m are given in [40].

For second order problems, the results in theorems 3.1-3.4 hold not only
for square or triangular elements but also for curvilinear elements having
some uniformity properties with respect to their mapping onto standard
elements. For details, see eg. [31].

As we have seen, the presence cf singularitles significantly decreases
the rate of convergence. In addition, the p-version is influenced by the
“pollution” problem [41]. By this we mean the effect of an error in one
element (usually due to a singularity present in the true solution over that
element) permeating into adjacent elements (where the exact solution is
regular). The pollution problem is more serious if the stresses are of
interest. It may be overcome by using refined meshes (a few layers) in the
area of singularity. Another approach to deal with this problem is to use
properly mapped shape functions. For detalls, see [42].

So far, we have assumed in our model problem that the Dirichlet boundary

set is empty. The theorems we mentioned above are valid without changes when

18




w=0 on D l.e. the Dirichlet conditions are homogeneous. Then we simply
use OV(p,h) = V(p,h) n%H!(@) instead of V(p,h).

In the case of nonhomogenous essential boundary conditions, we have to
approximate w by wpgp SO that Ve is in the trace space of the finite

element space V(p,h). This is done by a projection in the H(r,) nornm,

J
0<y<1. The cases 7 = 1,1/2 have been analyzed in (28], [43] and the
general case in [44). The results show that for smooth w, the optimal rate
of convergence is achieved when 1/2<y<1. More precisely, Theorem 3.4

holds for 1/2<y<1 and weHs(l‘ ), s>1. For w unsmooth, e.g.

J
weE Hs(I'J). %<s<%, the optimal rate of convergence using the proJjection
approach has been established only for 7 = l. Numerical results are given in

2
(30] and (44]. This problem does not occur with the h-p version when w is

singular in the neighborhood of the vertices. In [45), we have analyzed a
class of constralined boundary conditions which are important in practice in
structural mechanics.

So far we have only mentioned the solution of elliptic problems. The p
and h-p version can also be used for other types of problems. For example,
in [46], [47] we analyze the method for solving parabolic equations when the

h-p version is used in both the time and space variables.

4. The problem of optimal meshes and adaptive approaches.

In the previous section, Fig. 3.3a showed the convergence rate for the
h-version using a uniform mesh. This rate may be improved by using better
meshes in certain cases.

The problem of optimal meshes for the h- and h-p versions was studied in
detail for 1 dimension in [48] and for 2 dimensions in [49]. Let us mention
some one dimensional results.

We consider the simple model problem

16




-u* = £, u(0) = u(1) =0

with the exact solution u(x) = xa-x. a>1. Let x, denote the mesh

2 i
8
points. For the h-version, the radical mesh X, = [—:—] i=1,---.m is
optimal.
pe+l

Theorem 4.1 [48]. The radical mesh with 8 =

1P
* -
lim oPlu-u__fl. = C(a )Ié———l
YrE'E P

m-0 a-

is optimal and
-3

(ST

where

alf(«) |sin ma] I'(p~a+l)

C(a,p) =
Ve 4PV3peT r(p+1/2)

Theorem 4.1 shows that for the h-version, the best possible rate of
convergence is O(hp), which is algebrajc, and not exponeptial (as for the h-p
version).

For the h-p version, the optimal mesh is a geometric one with ratio q,
X = qm_i. 0<q<1, 1 =1,2,---,m and the optimal p-distribution is
linear, p, = [si] + 1 where [a] denotes the integral part of a and
p, 1s the degree of the element (X,_4+%,). § will be called the glope.

In the case of uniform p, we use p = {sm] + 1. The optimality is

understood in the sense that the error using the optimal mesh and optimal

degree distribution has the same exponential rate q’ (a-172)N

opt as the best

achievable rate among all mesh and p distributions with the same number of
degrees of freedom N.

Theorem 4.2. We have ¢ = 2a-1. Then

2
opt " (v2-1)° » 0.17 and s,

pt

l“o-uFElE < C(a)qop[:- )

17




In the case of uniform degree distribution we have

Theorenm 4. 3. dopt = (v3-1)%, Sopt ™ 2a-1 and

_ Y{a-172)N ,-0/2
uuo uFE“E < C(a)qopt N

o =nin (2a-1,a).

We have seen that for p uniform, the radical mesh is optimal. Hence we can
ask about the envelope of optimal radical meshes. Then the radical meshes
tend to a geometric one with ratio q = e-4/92 % 0.54 and

s = 4(a—-1/2)/e2 % 0.54(a-1/2). These, together with many more detailed
results as well as numerical experimentation are given in [48].

In two dimensions, the situation is more complicated. Nevertheless, the

linear distribution of p and geometric mesh are once again optimal. The

3

estimates will be of the type e ¢ W i contrast to e "'N

in one dimension.
For circular elements and optimal choice of the degrees of elements in

N

different directions, we can achieve the rate e too. For detalls we
refer to (49].

The above results indicate that the geometric mesh with q = 0.15 1is the
right mesh for practical use. It is preferable to over-refine the mesh
slightly. The selection of the number of layers can be made in an expert
system mode or adaptively. Adaptive approaches were addressed in [49], (S0].
Let us mention that the codes FIESTA and STRIPE have some adaptive features
with shape functions being selected in an anisotropic way. In PROBE, the

determination of the p-distribution is done at present by the user.

S. The p and h-p version for integral equations and mixed methods.

The theorems in Section 3 (and 4) were based on approximation theory

results in the Hl norm. We can proceed analogously for cases where we have a

18




coercive bilinear form over some other space H for which corresponding

regularity and p- and h~p version approximation results are known. In [51]

this procedure is extended to the boundary element method. Consider for

example the model problem from Section 2, of Laplace’s equation on a polygonal

domain when both the Dirichlet and Neumann sets are present. Then the problem

can be formulated on Fn (see [51)) as a system of integral equations with the
a®

unknowns being given by the pairs [Olr , a_nll' ] where I'zelt, t'leD. This
2 1

problem may be put in the form B(u,v) = F(v). It satisfies a Garding
inequality which is sufficient to obtain an optimal rate of convergence for
the Galerkiﬁ approximation. In [52], the h and h-p versions were analyzed and
it was shown that the rate of convergence of the p-version {s twice as high as
that for the h-version (with uniform mesh), similar to the cases discussed
earlier. We can also obtain an exponential rate of -convergence for the h-p
version with a properly chosen (geometric) mesh and degrees analogously
selected as in the previous sections. For details, see [53], [54], [55]. For
adaptive procedures in the h-p version for integral equations, we refer to
[sel.

The problems discussed so far have been gtable (in the sense that they
are coercive or a Garding inequality holds). For mixed methods, one must
first establish the stablility of the approximate subspaces used, via an
inf-sup condition. The stability of the p-version in the context of certain
mixed methods for Stokes’ problem has been discussed in [57), [58). (See also
spectral method references). In [59], the Raviart-Thomas and the Brezzi-
Douglas-Marini spaces for the mixed formulation of linear elliptic problems
have been shown to be stable and possess optimal convergence properties in
terms of the h-p extension using quasiuniform meshes. The p~extension of

Raviart-Thomas elements for quasilinear problems is analyzed in (60].
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6. The h-p version and mathematical modeling.

Let us consider as a model problem the problem of plate bending. This
problem is, in fact, a 3 dimensional problem over a "thin" domain
Q=wx(-t/2,t/2) clR3. Two dimensional formulations such as Kirchhoff or
Reissner-Mindlin models (among others) are dimensionally reduced formulations
of this problem. These formulations generally are asymptotically identical
for t —0, but yield different results for t>0. The solutions of these 2
dimensional models have to be understood as approximations of the 3 dimen-
sional formulation. The error depends on the type of input data (for eg.,
clamped or simply supported plate), thickness and the aim of the computation.
The h-p version gives a natural tool which leads to a hierarchical set of

formulations. Denoting the displacements by u = (ui.uz.ua), the dimensional

reduction can be understood as a projection on the space of solutions of the

form
S1
= (J) 2j-1
“1(x1’x2'x3) X uy (xl.xz)x3
J=1
S2
- (J) 2J-1
(6.1) uz(xl.xz.xa) = Z u, (xl,xz)x3
J=1
S3
- (J) 2J
Uy (%, %y, %) 2“3 (%, %,)%5°"
J=0
For example if v = 0 (v = Poisson ratio) then the choice s1 = s2 = 1, Sy = (o}
leads to the Reissner-Mindlin model. For v>0 one has to take s, = 1. For

3
more about dimensional reduction we refer to [61] and references therein. The

error of the reduced formulations depends on various factors. For example
(see {62]), for the simply (soft) supported uniformly loaded Reissner-Mindlin

plate with angle 30°, side length 1 and thickness t = 01, 001, the errors




in the energy norm are 4.34% and 15.41% respectively. The form (6.1) can be

understood as the p-version with the polynomial degrees in the x, direction

3

being different from those in x From this point of view, the h-p

1° %o
version is a natural tool for deriving plate models and assessing their error
(see next section). The program PROBE has these types of features for appli-
cation to plates and shells, as well as for transitions where s 1is changed
in various parts of the domain. As shown in [62] and [63], the various
boundary conditions (hard, soft) have a significant influence on the solution.

For more, we also refer to [64].

7. Extraction techniques.

Usually in qomputational practice, the solution u of our variational
problem is only a tool to get the primary quantity of interest. For example,
the goal of the computation may be to find the stresses at a point, or the
maximal stress (e.g. Mises equivalent stress) over a region, or the
resultants (reactions, moments) in the plates and shells, stress intensity
factors, etc. Mathematically, we are interested in evaluating the values of
certain functionals. This can be done in a trivial way (for example, by
differentiating the finite element solution uFE) or using more sophisticated
approaches which lead to more accurate results (with accuracy being of the
order of the error in the energy, rather than the energy norm). Such
techniques, called extraction techniques, were addressed, for e.g., in [65]
and applied in various important contexts (see [66], [67]).

As an example of an extraction technique, we present computations for the
stress intensity factors for the model problem introduced in Section 3, but
with the exact solution consisting of two terms of the expansion, A, = 0.54448

1

and A, = 0.90853. We have selected the intensity factors a«, = 1 (mode 1)

2 1

a1




and ay = 2 (mode 2). Fig.7.1 shows the error of @, and a, in the scale

log exN'? for the two layer mesh as well as the error in the strain energy

(not energy norm).
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Fig.7.1 Con&ergence of the stress intensity factors computed by the
extraction technique.

We see that, in fact, the accuracy in the stress intensity factors is of
the same order as that in the strain energy and that for high p, the second
mode is more accurate than the strain energy (see [65] for an analysis). As
we see, the error does not behave monotonically. (The computations above were
performed by PROBE, which offers this extraction technique feature). An
essentlal prerequisite of the extraction here is the knowledge of the
coefficients ¢J and ¢J(9) in (2.8) (and the adjoint of WJ(O)). As shown in
Section 2, these are avallable. For the extraction of other data of Interest,
we refer, for e.g., to [67]. Although they are not computationally trivial,
extraction techniques can potentially save a large amount of computer time
(when included as a standard feature in a program), especially in 3 dimen-

sions, where an error of order 1% in stain energy is easy to obtain but an

error of order 1% in the energy norm is very difficult to achieve.




—>
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8. A-posteriori estimates.

An essential aspect of the finite element method is quality control
of the computed results of interest. The p-version (on properly designed
meshes) gives an effective tool for this, because it computes extensions

without changing the mesh (and saves precious user time). The computed

sequence of the value of interest can be analyzed by various extrapolation
approaches (or simply by assessing the changes with p visually). If the
data is monotonic, as in the case of the energy, the extrapolation technique
is very effective.

Table 8.1 shows the approximate relative ~nergy norm error estimates by

the program PROBE for the model problem mentioned in Section 3, with n = 2

layers.
Table 8.1 The estimated and true energy norm errors.
Estimated| True Estimated| True
p N Error Error p N Error Error
1 41 25.41 25.41 5 497 1.41 1.47
2 1189 8.45 8.45 6 695 1.15 1.32
3 209 3.91 3.93 7 729 0.89 0.98
4 335 2.09 2.13 8 1199 0.74 0.85

The estimates are computed by using extrapolation based on the formula

(8.1) ||e||§ =cNP = Epy - Erg

where EEX (respectively EFE) is the exact (respectively computed) finite
element energy. (Note that there are 3 unknowns in (8.1):C,B.EEX.). We

compute EEx out of three successive values. The final value of EEX accepted
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is then used for all p. When the error curve is concave (as we would like to
achieve by the proper mesh and an exponential rate of convergence), then the
estimated errors are upper bounds. In any case, as Table 8.1 shows, the error
estimate is of high quality. We can and should use other quality controls,
e.g. various equilibrium checks, etc. (see e.g. [68)). PROBE has various such
features. Essentially, one has to compute the values of interest more
accurately than needed for engineering purposes because of quality control
reasons.

If the values are not monotonic than it is easiest to present the entire
sequence to the user. As an examp.e, we show in Fig.8.1 the 3 dimensional
analysis of a splice and depict the maximal principle stress in the region.
The standard h-version computation results are also given. The data are
taken from [69].

It is observed that one may decide by inspection that the p-version has

converged satisfactorily. A similar deduction is not possible with the

h~-version.
[+ (psi)
54,000 ( h-version .FT-
+5%
sao00)- uil
p-version +2.5%
-2.5%
$0,000 | ._L
|
version
L]
48,000 b 4%
100 4; 1.600 4,oloo 10,000 13,000

N(Global DOF)

Fig. 8.1 The accuracy of the maximal principal stresses in a splice
computation
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Similar principles can be used in the error assessment of the modeling

mentioned in Section 6 and extraction techniques mentioned in Section 7.

9. Robustness and problems involving "locking".

A robust method is one which performs uniformly well for a broad class
of input data. Consider for example the elasti...y problem as defined in
Section 2. When v —1/2, the form degenerates (although the solution stays
smooth, see Section 2) and we have div u—0. It is well known that the
h-version of the finite element method for low degree p performs very
poorly, due to the phenomenon called "locking".

There are various types of locking. The above mentioned is called
Polsson locking and will be briefly discussed here. Essentially, when
v—1/2, problems arise in a) the convergence in the energy norm and b)
computation of the pressure (a’x+¢y).

We have to distinguish between the case of stralght and curved
elements. It has been shown in [70] that the rate of convergence in the
energy norm of the p-version with straight triangles is not influenced by
v—1/2. 1In [71], it has been shown that the h-version with straight
triangles does not show locking when p24. The general case is analyzed in
{72]), [(73]. Theorems 9.1 and 9.2 are specialized versions of the more general

results obtained in these references.

Theorem 9.1 (3.3) holds for strajght-sided triangles and parallelograms
uniformly in v provided that pro where Py = 4 for triangles, 3 for
Qp elements and 5 for Q") elements.

The above theorem shows that with straight triangles and parallelograms,
no locking occurs for pro both with the h and the p-version. For

curvilinear elements, we have for the p-version:




Theorem 8.2. Let goer(n). k>1. Then the following estimate holds for

the p-version uniformly in v,

k-1
1o - rgly § Clp-s) gl

where s20 depends upon the mappings of the curvilinear elements onto the
standard elements, provided these mappings are rational.

A related theorem for the case when the mappings are analytic may be
found in [72]), [73].

As a simple illustration, we show the relative error in the energy norm
for various stralight and curvilinear choices of a single element for v = 0.3

10

and v = 0.5 - 10 ', where a Q;) type element is used. For a detailed

analysis and numerical examples, we refer to [72], [73].
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The second problem is the pressure recovery. In [74], (75], it 1s shown
that the stress components o-x—o-y, ‘l.'xy are accurately computable directly
from the solution (by Hooke’s Law) but the directly computed pressure is
unusable. Nevertheless, the pressure can be accurately recovered by a post-
processing technique based on the observation that it is a harmonic function

and that Upp is accurate in the energy nora.




A similar behavior occurs for other cases of material which can be
associated with nearly degenerate bilinear forms (see [14]) in two and
three dimensions. The h-p version s also very robust in relation to the

shear locking that occurs in plate theory.

10. Implementational aspects.

In contrast to the h-version, the p-version needs much more computational
work to construct the local stiffness matrices and load vectors. Moreover, it
leads to matrices which are less sparse. On the other hand, the local
stiffness matrix computation is completely parallel (and for uniform p 1is
well balanced) which can obviously be implemented by parallel computers.'

For complex geometries, curvilinear elements with relatively large
distortion cannot be avoided. This problem is overcome in the p-version by
using quadrature rules with the number of quadrature points depending on the
distortion.

The system of equations for the FEM solution is less sparse for high »p
than for low p. Hence the solution is more expensive for high p. Never-
theless, the ratio of the computational work to the accuracy obtained is more
favorable for the p-version (this is also true for engineering accuracy). For
a detailed analysis we refer to [76], [77].

Iterative method techniques like the conjugate gradient method can be
very favorably influenced by the correct selection of the shape functions.

For various aspects of the influence of the shape functions on the iterative
process, we refer to (78]. In [79) we have shown that in 2 dimensions, the
preconditioned conjugate gradient method (preconditioning by p = 1 computa-
tion) requires 0(log p) steps asymptotically when the shape functions are

properly chosen.
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In (80], detailed experimentation and analysis of the factors influencing
effectiveness and parallelization on Allliant computers are presented. It is
shown that the speed-up is at least 90%.

In general, mesh generation, especially in 3 dimensions, is a difficult
task. Presently, a mesh generator geared to the needs of the p-version is not
available and a PATRAN interface is usually used.

For experimentation with mesh refinement of the h-p version on tensor

product meshes in two dimensions, we refer to (81].

11. Engineering experience and practice.

In the previous section, we discussed various theoretical aspects of the
h-p version. A large amount of engineering and industrial experience with
the method has been gained in connection with the use of commercial programs
FIESTA, PROBE and research program STRIPE. For some articles, we refer to

[82] and references therein. See also [83].
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